Skip to main content
Log in

Turbulent flow in converging nozzles, part one: boundary layer solution

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The boundary layer integral method is used to investigate the development of the turbulent swirling flow at the entrance region of a conical nozzle. The governing equations in the spherical coordinate system are simplified with the boundary layer assumptions and integrated through the boundary layer. The resulting sets of differential equations are then solved by the fourth-order Adams predictor-corrector method. The free vortex and uniform velocity profiles are applied for the tangential and axial velocities at the inlet region, respectively. Due to the lack of experimental data for swirling flows in converging nozzles, the developed model is validated against the numerical simulations. The results of numerical simulations demonstrate the capability of the analytical model in predicting boundary layer parameters such as the boundary layer growth, the shear rate, the boundary layer thickness, and the swirl intensity decay rate for different cone angles. The proposed method introduces a simple and robust procedure to investigate the boundary layer parameters inside the converging geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

P :

static pressure, Pa

R, θ, φ :

spherical coordinates

R o :

radius of cone at the inlet

S :

swirl intensity

S o :

swirl intensity at the cone inlet

U Φ o , U R o :

inlet rotational and axial velocities at the edge of the boundary layer

U Φ,U R :

rotational and axial velocities at the edge of the boundary layer

u R , u θ , u φ :

velocities in the R, θ, and φ directions inside the boundary layer

u*:

shear velocity

y :

wall distance

y + :

non-dimensional wall distance

α :

half cone angle

δ R :

axial boundary layer thickness

δ φ :

rotational boundary layer thickness

\( \bar \delta _R \) :

non-dimensional axial boundary layer thickness

\( \bar \delta _\phi \) :

non-dimensional rotational boundary layer thickness

υ :

kinematic viscosity

Ω:

constant of the rotational velocity

ρ :

density

τ :

axial wall shear stress

τ φ θ :

rotational wall shear stress

o :

inlet condition

−:

non-dimensional parameter

References

  1. Algifri, A. H., Bhardwaj, R. K., and Rao, Y. V. N. Eddy viscosity in decaying swirl flow in a pipe. Applied Scientific Research, 45(4), 287–302 (1988)

    Article  Google Scholar 

  2. Najafi, A. F. Investigation of Internal Turbulent Swirling Flow, Single Phase and Two Phase Flow, Ph. D. dissertation, Sharif University of Technology, 24–30 (2004)

  3. Gul, H. Enhancement of heat transfer in a circular tube with tangential swirl generators. Experimental Heat Transfer, 19(2), 81–93 (2006)

    Article  MathSciNet  Google Scholar 

  4. Chang, F. and Dhir, V. K. Mechanisms of heat transfer enhancement and slow decay of swirl in tubes using tangential injection. International Journal of Heat and Fluid Flow, 16(2), 78–87 (1995)

    Article  Google Scholar 

  5. Thambu, R., Babinchak, B. T., Ligrani, P. M., Hedlund, C. R., Moon, H. K., and Glezer, B. Flow in a simple swirl chamber with and without controlled inlet forcing. Experiments in Fluids, 26(4), 347–357 (1999)

    Article  Google Scholar 

  6. Zaherzade, N. H. and Jagadish, B. S. Heat transfer in decaying swirl flow. International Journal of Heat and Mass Transfer, 18(7–8), 941–944 (1975)

    Article  Google Scholar 

  7. Yilmaz, M., Yapici, S., Jomakli, O., and Sara, O. N. Energy correlation of heat transfer and enhancement efficiency in decaying swirl flow. Heat and Mass Transfer, 38(4–5), 351–358 (2002)

    Article  Google Scholar 

  8. Steenbergen, W. and Voskamp, J. The rate of decay of swirl in turbulent pipe flow. Flow Measurement and Instrumentation, 9(2), 67–78 (1998)

    Article  Google Scholar 

  9. Cakmak, G. and Yildiz, C. The influence of the injectors with swirling flow generating on the heat transfer in the concentric heat exchanger. International Communication in Heat and Mass Transfer, 34(6), 728–739 (2007)

    Article  Google Scholar 

  10. Martemianov, S. and Okulov, V. L. On heat transfer enhancement in swirl pipe flows. International Journal of Heat and Mass Transfer, 47(10–11), 2379–2393 (2004)

    Article  MATH  Google Scholar 

  11. Taylor, G. I. The boundary layer in the converging nozzle of swirl atomizer. The Quarterly Journal of Mechanics and Applied Mathematics, 3(2), 129–139 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  12. Weber, H. E. The boundary layer inside a conical surface due to swirl. Journal of Applied Mechanics, 23, 587–592 (1956)

    MATH  Google Scholar 

  13. Kreith, F. and Margolis, D. Heat transfer and friction in turbulent vortex flow. Applied Scientific Research, 8(1), 457–473 (1959)

    Article  MATH  Google Scholar 

  14. Rochino, A. and Lavan, Z. Analytical investigations of incompressible turbulent swirling flow in stationary ducts. Journal of Applied Mechanics, 36, 151–158 (1969)

    Google Scholar 

  15. Akiyama, T. and Ikeda, M. Fundamental study of the fluid mechanics of swirling pipe flow with air suction. Industrial and Engineering Chemistry Process Design and Development, 25(4), 907–913 (1986)

    Article  Google Scholar 

  16. Yajnik, K. S. and Subbaiah, M. V. Experiments on swirling turbulent flows: part 1, similarity in swirling flows. Journal of Fluid Mechanics, 60(4), 665–687 (1973)

    Article  Google Scholar 

  17. Kitoh, O. Experimental study of turbulent swirling flow in a straight pipe. Journal of Fluid Mechanics, 225, 445–479 (1991)

    Article  Google Scholar 

  18. Algifri, A. H., Bhardwaj, R. K., and Rao, Y. V. N. Turbulence measurement in decaying swirl flow in a pipe. Applied Scientific Research, 45(3), 233–250 (1988)

    Article  Google Scholar 

  19. Alekseenko, S. V., Kuibin, P. A., Okulov, V. L., and Shtork, S. I. Helical vortices in swirl flow. Journal of Fluid Mechanics, 382, 195–243 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lucca-Negro, O. O. and Dohery, T. Vortex breakdown: a review. Progress in Energy and Combustion Science, 27(4), 431–481 (2001)

    Article  Google Scholar 

  21. Talbot, L. Laminar swirling pipe flow. Journal of Applied Mechanics, 21, 1–7 (1954)

    MATH  Google Scholar 

  22. Kreith, F. and Sonju, K. The decay of a turbulent swirl in a pipe. Journal of Fluid Mechanics, 22(2), 257–271 (1965)

    Article  MATH  Google Scholar 

  23. Yu, S. C. M. and Kitoh, O. A general formulation for the decay of swirling motion along a straight pipe. International Communications in Heat and Mass Transfer, 21(5), 719–728 (1994)

    Article  Google Scholar 

  24. Harris, M. J. R. The decay of swirl in a pipe. International Journal of Heat and Fluid Flow, 15(3), 212–217 (1994)

    Article  Google Scholar 

  25. Najafi, A. F., Saidi, M. H., Sadeghipour, M. S., and Souhar, M. Boundary layer solution for the turbulent swirling decay flow through a fixed pipe: SBR at the inlet. International Journal of Engineering Science, 43(1–2), 107–120 (2005)

    Article  Google Scholar 

  26. Maddahian, R., Kebriaee, A., Farhanieh, B., and Firoozabadi, B. Analytical investigation of boundary layer growth and swirl intensity decay rate in a pipe. Archive of Applied Mechanics, 81(4), 489–501 (2010)

    Article  Google Scholar 

  27. Burden, R. L., Faires, J. D. Numerical Analysis, 7th ed., Brooks/Cole, Belmont, 297–300 (2000)

    Google Scholar 

  28. Ashraf, A. I. Comprehensive Study of Internal Flow Field and Linear and Nonlinear Instability of an Annular Liquid Sheet Emanating from an Atomizer, Ph. D. dissertation, University of Cincinnati, 32–49 (2006)

  29. Schlichting, H. Boundary Layer Theory, 7th ed., McGraw-Hill, New York, 47–223 (1973)

    Google Scholar 

  30. Farhanieh, B. and Davidson, L. Manual of CALC-BFC, Chalmers University of Technology, Gothenburg, Sweden (1991)

    Google Scholar 

  31. Maddahian, R. and Farhanieh, B. Numerical investigation of thermo fluid mechanics of differentially heated rotating tubes. Heat Transfer Engineering, 31(3), 201–211 (2010)

    Article  Google Scholar 

  32. Patankar, S. V. Numerical Heat Transfer and Fluid Flow, 1st ed., Taylor and Francis, Washington DC, 113–135 (1980)

    MATH  Google Scholar 

  33. Rhie, C. M. and Chow, L. W. Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA, 21(11), 1527–1532 (1983)

    Article  Google Scholar 

  34. Slack, M. D., Prasad, R. O., Bakker, A., and Boysan, F. Advances in cyclone modeling using unstructured grids. Chemical Engineering Research and Design, 78(8), 1098–1104 (2000)

    Article  Google Scholar 

  35. De Souza, J. and Silveria-Neto, A. Preliminary results of large eddy simulations of a hydrocyclone. Thermal Engineering, 3(2), 168–173 (2004)

    Google Scholar 

  36. Cullivan, J. C., Williams, R. A., and Cross, C. R. Understanding the hydrocyclone separator through computational fluid dynamics. Chemical Engineering Research and Design, 81(4), 455–466 (2003)

    Article  Google Scholar 

  37. Cullivan, J. C., Williams, R. A., Dyakowski, T., and Cross, C. R. New understanding of a hydrocyclone flow field and separation mechanism from computational fluid dynamics. Minerals Engineering, 17(5), 651–660 (2004)

    Article  Google Scholar 

  38. Nowakowski, A. F. and Dyakowski, T. Investigation of swirling flow structure in hydrocyclones. Chemical Engineering Research and Design, 81(8), 862–873 (2003)

    Article  Google Scholar 

  39. Launder, B. E., Reece, G. J., and Rodi, W. Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics, 68(3), 537–566 (1975)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Maddahian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maddahian, R., Farhanieh, B. & Firoozabadi, B. Turbulent flow in converging nozzles, part one: boundary layer solution. Appl. Math. Mech.-Engl. Ed. 32, 645–662 (2011). https://doi.org/10.1007/s10483-011-1446-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-011-1446-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation